

Hendrik Lorentz received the Nobel prize for physics in 1902 for his work on magnetism in radiation.

Physics is a quantitative science concerned with the relationships between careful measurements of well-defined physical quantities. As such, measurement comes first in physics. Indeed, as a science student, it is very important that you learn well the *art* of measurement.

A measurement, which is a quantitative observation, is nothing more than a comparison. In order to make a measurement, we must first establish some standard units. Then, using these standard units, we measure an unknown quantity by comparing it to the standard unit. Every measurement includes three things:

- ^① The quantity measured (distance, mass, time, speed, etc.)
- ^② The magnitude or size (a number)
- ③ The unit (metre, kilogram, second, metres-per-second, etc.)

• Counting versus Measuring

You should realize that counting always results in **exact** numbers while measurements always result in **approximate** numbers. No matter how accurate a measuring instrument is and no matter how much expertise the person making the measurement has, the results of a measurement will **always** be approximate.

• Accuracy versus Precision

By definition, accuracy means how close a measured value is to the accepted standard value. Precision means how close together a series of measurements are. That is, precision refers to the **reproducibility** of a series of measurements.

Believe it or not!

As you know, matter is made up of atoms each of which contains electrons. How many electrons are there in the universe? A large number, correct? Yet the following number is *greater* than *all* the electrons in the **universe**!

 $2^{200} = 16069380442258990275541962092341162602522202993782792835301376$

1. What is the difference between "counted" numbers and "measured" numbers?

Counted numbers result from counting, measured numbers result from a measurement. Note that while counted numbers are exact, measured numbers are always approximate.

2. Can a measurement ever produce an exact number? \underline{N}_{0} Why?

Because measurement, by its nature, is an approximate process. Indeed, in all measurments, the least significant digit (the last number on the right), is always the result of a "guess" on the part of the measurer (observer).

3. What is the significance in reporting a measured value as 66.0 rather than 66?

The number 66.0 is more precise than the number 66.

- 4. What are the two main causes of uncertainty in a measurement?
 - **①** The measuring instrument is not perfect.
 - **②** The observer (measurer) is not perfect.
- 5. How many uncertain digits do all measured values have? One
- 6. Define "order of magnitude".

The approximate size of a quantity (in powers of 10).

7. Below are the results of various measurements. For each case, tell which digit was "guessed at" by the observer making the measurement:

	MEASUREMENT	UNCERTAIN DIGIT	UNCERTAINTY
a)	125.4 mL	4	10ths
b)	9.251 m	1	1000ths
c)	27 cm	7	1s
d)	425.90 cm	0	10ths

8. Using the two rulers on the right, read the measurement of the black bar:

Ruler-A: **2.7 cm**

Ruler-B: **2.75 cm**

9. Using the two rulers on the right, read the measurement of the black bar:

Ruler-A: **6.4 cm**

Ruler-B: **5.86 cm**

A 5	6	7	8 cım
B 5		6	7 cm /

10. The figures below represent a thermometer showing four different thermometer readings. What is the temperature for each reading?

THERMOMETER	READING (°C)	ESTIMATED DIGIT
А	5.6 °C	6
В	9.2 °C	2
С	23.5 °C	5
D	20.8 °C	8

11. Differentiate between accuracy and precision.

By definition, accuracy means how close a measured value is to the accepted standard value. Precision means how close together a series of measurements are. That is, precision refers to the reproducibility of a series of measurements. **12.** Assuming that the following represents target shooting (darts), classify both the precision and the accuracy for each player as GOOD or BAD:

	Jim	Kim	Tim
Precision	Bad	Good	Good
Accuracy	Bad	Bad	Good
