

Physics is a quantitative science concerned with the relationships between careful measurements of well-defined physical quantities. As such, measurement comes first in physics. Indeed, as a science student, it is very important that you learn well the art of measurement.

A measurement, which is a quantitative observation, is nothing more than a comparison. In order to make a measurement, we must first establish some standard units. Then, using these standard units, we measure an unknown quantity by comparing it to the standard unit. Every measurement includes three things:
(1) The quantity measured (distance, mass, time, speed, etc.)
(2) The magnitude or size (a number)
(3) The unit (metre, kilogram, second, metres-per-second, etc.)

- Counting versus Measuring

You should realize that counting always results in exact numbers while measurements always result in approximate numbers. No matter how accurate a measuring instrument is and no matter how much expertise the person making the measurement has, the results of a measurement will always be approximate.

- Accuracy versus Precision

By definition, accuracy means how close a measured value is to the accepted standard value. Precision means how close together a series of measurements are. That is, precision refers to the reproducibility of a series of measurements.

$$
\begin{aligned}
& \text { Believe it or not! } \\
& \text { As you know, matter is made up of atoms each of which contains electrons. } \\
& \text { How many electrons are there in the universe? A large number, correct? } \\
& \text { Yet the following number is greater than all the electrons in the universe! } \\
& 2^{200}=16069380442258990275541962092341162602522202993782792835301376
\end{aligned}
$$

1. What is the difference between "counted" numbers and "measured" numbers?

> Counted numbers result from counting, measured numbers result from a measurement. Note that while counted numbers are exact, measured numbers are always approximate.
2. Can a measurement ever produce an exact number? No Why?

Because measurement, by its nature, is an approximate process. Indeed, in all measurments, the least significant digit (the last number on the right), is always the result of a "guess" on the part of the measurer (observer).
3. What is the significance in reporting a measured value as 66.0 rather than 66 ?

The number 66.0 is more precise than the number 66.
4. What are the two main causes of uncertainty in a measurement?
(1) The measuring instrument is not perfect.
(2) The observer (measurer) is not perfect.
5. How many uncertain digits do all measured values have? One
6. Define "order of magnitude".

The approximate size of a quantity (in powers of 10).
7. Below are the results of various measurements. For each case, tell which digit was "guessed at" by the observer making the measurement:
a)

	MEASUREMENT	UNCERTAIN DIGIT
UNCERTAINTY		
	125.4 mL	$\mathbf{4}$
$\mathbf{1 0 t h s}$		
b)	9.251 m	$\mathbf{1}$
$\mathbf{1 0 0 0 t h s}$		
	27 cm	$\mathbf{7}$
$\mathbf{1 s}$		
	425.90 cm	$\mathbf{0}$
$\mathbf{1 0 t h s}$		

8. Using the two rulers on the right, read the measurement of the black bar:

Ruler-A: \qquad

Ruler-B: \qquad

9. Using the two rulers on the right, read the measurement of the black bar:

Ruler-A: $\quad \mathbf{6 . 4} \mathbf{~ c m}$
Ruler-B: $\quad \mathbf{5 . 8 6} \mathbf{~ c m}$

10. The figures below represent a thermometer showing four different thermometer readings. What is the temperature for each reading?

THERMOMETER	READING $\left({ }^{\circ} \mathrm{C}\right)$	ESTIMATED DIGIT
A	$\mathbf{5 . 6}{ }^{\circ} \mathrm{C}$	$\mathbf{6}$
B	$\mathbf{9 . 2}{ }^{\circ} \mathrm{C}$	$\mathbf{2}$
C	$\mathbf{2 3 . 5}{ }^{\circ} \mathrm{C}$	$\mathbf{5}$
D	$\mathbf{2 0 . 8}{ }^{\circ} \mathrm{C}$	$\mathbf{8}$

11. Differentiate between accuracy and precision.

By definition, accuracy means how close a measured value is to the accepted standard value. Precision means how close together a series of measurments are. That is, precision refers to the reproducibility of a series of measurements.
12. Assuming that the following represents target shooting (darts), classify both the precision and the accuracy for each player as GOOD or BAD:

	Jim	Kim	Tim
Precision	Bad	Good	Good
Accuracy	Bad	Bad	Good

